Measurements and Modelling of Bi-directional Reflectance of Wheat: Prosail Validation Results

نویسنده

  • D. Barman
چکیده

In this study, an attempt has been made to define the geometry of sensor and source position to best relate plant biophysical parameters with bidirectional reflectance of wheat varieties varying in canopy architecture and to validate the performance of PROSAIL radiative transfer model. A field experiment was conducted with two wheat cultivars varying in canopy geometry and phenology. The bidirectional measurements between 400-1100 nm at 5nm interval were recorded every week at six view azimuth and four view zenith positions using spectro-radiometer. Canopy biophysical parameters were recorded synchronous to bi-directional reflectance measurements. The broadband reflectances were used to compute the NDVIs which were subsequently related to leaf area index and biomass. Results showed that the bidirectional reflectance increased with the increase in view zenith from 20° to 60° irrespective of the sensor azimuth. The reflectance was observed maximum at 50° view zenith and 150° azimuth (hotspot). The measured bidirectional NDVI had significant logarithmic relationship with LAI and linear relationship with biomass for both the varieties of wheat and maximum correlation of NDVI with LAI and with biomass was obtained at the hotspot position.. The PROSAIL validation results showed that the model simulated well the overall shape of spectra for all combination of view zenith and azimuth position for both wheat varieties with the overall RMSE less then 5 percent. The hotspot and dark spot positions were also well simulated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic Algorithm based Inversion Modelling of PROSAIL for Retrieval of Wheat Biophysical Parameters from Bi-directional Reflectance Data

Canopy reflectance model inversions are widely used for estimation of vegetation properties from remote sensing, but the inversion accuracy needs significant improvements. In recent years, applications of the genetic algorithms (GA) to a variety of optimization problems in remote sensing have been successfully demonstrated. The present study is focused on the GA based inversion approach of radi...

متن کامل

Directional reflectance of vegetation targets: Simulation of its space measurements by coupling atmospheric and biophysical radiative transfer models

Vegetative surfaces are non-lambertian and deriving their spectral properties from space-borne sensors becomes complicated when off-nadir view angles are taken into consideration. In order to utilize off-nadir observations a complete understanding of directional reflectance is needed. This requires understanding of propagation of solar radiation as radiative transfer (RT) problem through a coup...

متن کامل

Statistical comparison of MISR, ETMz and MODIS land surface reflectance and albedo products of the BARC land validation core site, USA

The Multi-angle Imaging Spectroradiometer (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the National Aeronautics and Space Administration (NASA)’s Earth Observing System (EOS) Terra satellite are crucial for generation of other products such as the Fraction of Photosynthetically Active Radiation (FPAR) and Leaf Area Index (LAI). The analysis reported here compares the...

متن کامل

Estimating crop biophysical properties from remote sensing data by inverting linked radiative transfer and ecophysiological models

a r t i c l e i n f o Keywords: Crop model CSM DSSAT Genetic algorithm Hyperspectral LAI Model inversion Nitrogen Optimization PEST PROSAIL Simulation Wheat Yield Remote sensing technology can rapidly provide spatial information on crop growth status, which ideally could be used to invert radiative transfer models or ecophysiological models for estimating a variety of crop biophysical propertie...

متن کامل

Estimation of Nitrogen Vertical Distribution by Bi-Directional Canopy Reflectance in Winter Wheat

Timely measurement of vertical foliage nitrogen distribution is critical for increasing crop yield and reducing environmental impact. In this study, a novel method with partial least square regression (PLSR) and vegetation indices was developed to determine optimal models for extracting vertical foliage nitrogen distribution of winter wheat by using bi-directional reflectance distribution funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006